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A timeline of emergence of diseases of animal origin  7 

To produce a timeline for the emergence of important animal-origin diseases, we first 8 

identified diseases of known zoonotic origin from the list of diseases considered to be a 9 

threat to global health [1] or which require urgent research [2] as identified by the World 10 

Health Organization. The final list included 15 diseases (see below). The diseases 11 

included those that are: (1) Strictly zoonotic and maintained in the human population 12 

only through transmission from a vertebrate animal host (e.g., Rift Valley fever and 13 

Hendra virus disease); (2) Diseases that are primarily maintained by zoonotic spillover 14 

but which can also be transmitted directly between humans (e.g., Ebola/Marburg virus 15 

diseases and MERS); (3) Diseases of animal origin which show very efficient human-to-16 

human transmission (e.g., HIV infection, H5N1/H1N1 influenza). We also, included 17 

several diseases are suspected to be of zoonotic origin but for which the vertebrate animal 18 

reservoir remains unconfirmed (e.g., Ebola virus disease, SARS and COVID-19). For 19 

each disease we identified: (1) Year of initial identification; (2) The location from where 20 
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the pathogen was first reported. In some cases, the location of initial report is not 21 

necessarily in the areas currently affected by the disease (e.g., Marburg virus disease); (3) 22 

The countries where local transmission has been reported (i.e., we excluded countries 23 

associated only with travel-related cases, if this information was known). The diseases 24 

included in the figure and source references are detailed below: (a) Crimean-Congo 25 

hemorrhagic fever [3-6]; (b) Dengue fever [3, 7, 8]; (c) Marburg virus disease [3, 9, 10]; 26 

(d) Lassa fever [3, 11, 12]; (e) Rift Valley fever [13-15]; (f) Hendra virus disease [3, 16, 27 

17]; (g) Highly Pathogenic Asian Avian Influenza A subtype H5N1 [3, 18, 19]; (h) Nipah 28 

virus disease [3, 16, 20]; (i) HIV/AIDS [3, 21, 22]; (j) Zika fever [23-25]; (k) Ebola virus 29 

disease [3, 26, 27]; (l) Sudden Acute Respiratory Syndrome (SARS) [3, 28, 29]; (m) 30 

Influenza A virus subtype H1N1 [30-32]; (n) Middle East Respiratory Syndrome 31 

(MERS) [33-35]; (o) Coronavirus Disease 2019 (COVID-19) [36-39]. 32 

A framework to prioritize species and geographical areas for zoonotic disease 33 

surveillance 34 

To help prioritize zoonotic disease surveillance there is a need to identify species of 35 

specific concern that are understudied and/or eco-geographical regions where disease 36 

emergence risk is high. Here we focus only on mammals, as disease emergence risk from 37 

mammalian species is high [40]. We first tested the relative importance of three variables 38 

that have been posited to affect the likelihood of a species harboring zoonotic pathogens: 39 

(a) phylogenetic proximity; (b) spatial overlap with humans; (c) pathogen richness. To 40 

carry out these analyses we first downloaded data relating to pathogen diversity and the 41 



 

 

3 

 

zoonotic status (i.e., the identification of pathogens that can infect humans) status of 42 

mammals from a comprehensive database reported previously [40], and available at 43 

https://figshare.com/articles/dataset/Zoonotic_hosts_and_land_use_change_PREDICTS_44 

code_and_data/7624289. Our analyses included a total of 505 species reported by Gibb et 45 

al., for which we were able to obtain phylogenetic and distribution data (see below).  46 

To calculate phylogenetic proximity of each species to humans we obtained the 47 

mammalian phylogeny from the PHYLACINE database reported previously [41], and 48 

available at https://megapast2future.github.io/PHYLACINE_1.2/. We then generated a 49 

majority-rule consensus tree using the R package APE, and computed the consensus edges 50 

using the R package PHYTOOLS. Using the final ultrametric tree we calculated the 51 

cophenetic distances between all species and humans using APE.  52 

To calculate the degree of spatial overlap with humans we used six steps: (1) We 53 

obtained the extent of occupancy (EOO) spatial polygons for each species from the 54 

International Union for Conservation of Nature (IUCN) Red List 55 

(https://www.iucnredlist.org/resources/spatial-data-download). While using the IUCN 56 

Red List to model species distributions is fraught with difficulties (e.g., subjectivity and  57 

uniformity of coverage), such expert-lists provide the most comprehensive 58 

documentation of species distributions at global scales, and thus remain an invaluable 59 

resource  [42]; (2) Previous research has shown that using the EOO directly leads to 60 

overestimation of species occupancy as the EOO could include unsuitable habitats [42]. 61 

Thus, for each species also downloaded species-specific habitat and elevation range data 62 

https://figshare.com/articles/dataset/%20Zoonotic_hosts_and_land_use_change_PREDICTS_code_and_data/7624289
https://figshare.com/articles/dataset/%20Zoonotic_hosts_and_land_use_change_PREDICTS_code_and_data/7624289
https://megapast2future.github.io/PHYLACINE_1.2/
https://www.iucnredlist.org/resources/spatial-data-download
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from the IUCN Red List (http://apiv3.iucnredlist.org/api/v3/docs) using the R package 63 

RREDLIST; (3) We then downloaded the spatially explicit characterization of IUCN’s 64 

habitat classification scheme [43], available in raster file format at 65 

https://zenodo.org/record/4058819#.X8xH19hKiUk. For each species we then calculated 66 

the proportion of usable habitat in each raster cell that fell within the EOO polygon; (4) 67 

For species with known elevation ranges, we also restricted the Area of Habitat to 68 

suitable elevations based on elevation data obtained from the USGS 69 

(https://topotools.cr.usgs.gov/gmted_viewer/gmted2010_global_grids.php); (5) We then 70 

obtained global human population data from the Socioeconomic Data and Applications 71 

Center (https://sedac.ciesin.columbia.edu/data/set/popdynamics-1-km-downscaled-pop-72 

base-year-projection-ssp-2000-2100-rev01/data-download), and converted the population 73 

estimates to density by dividing by raster cell area; (6) Finally, for each species we 74 

calculated an index of spatial overlap with humans by summing the human density across 75 

all raster cells within the EOO weighted by the proportion of suitable habitat within each 76 

raster cell (taking into consideration habitat characteristics and elevation; see above).  77 

We obtained data on non-human-shared pathogen richness for each mammal species 78 

from [40]. Because observed pathogen richness is expected to be correlated with research 79 

effort, Gibb et. al. controlled for effort by modelling the effect of publication effort on 80 

pathogen richness and calculating the residuals (scaled to mean 0, s.d. 1) from observed 81 

pathogen richness value of each species [40]. We used the residual richness of non-82 

human-shared pathogens as our index of pathogen richness. This measure will tend to 83 

https://zenodo.org/record/4058819#.X8xH19hKiUk
https://topotools.cr.usgs.gov/gmted_viewer/gmted2010_global_grids.php
https://sedac.ciesin.columbia.edu/data/set/popdynamics-1-km-downscaled-pop-base-year-projection-ssp-2000-2100-rev01/data-download
https://sedac.ciesin.columbia.edu/data/set/popdynamics-1-km-downscaled-pop-base-year-projection-ssp-2000-2100-rev01/data-download
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underestimate the pathogen richness of zoonotic hosts as it does not take into 84 

consideration zoonotic pathogen richness. However, we felt the measure was appropriate 85 

for our analyses as our main focus was to develop a framework to identify potential 86 

zoonotic hosts. Since, we expected that pathogen richness would be positively associated 87 

with zoonotic host status, our approach is expected to be conservative.  88 

To test if the above three variables were associated with the status of a mammalian 89 

species as a zoonotic host (i.e., a species harboring zoonotic pathogens) we used the same 90 

regression approach used by Gibb et al. [40], with some minor modifications. Briefly, we 91 

carried out a Bayesian mixed-effects regression with a binomial error distribution using 92 

Integrated Nested Laplace Approximation (INLA) as implemented in the R package R-93 

INLA. We used the host status as a Boolean dependent variable: non-hosts (species that 94 

did not harbor human pathogens) and hosts (species harbored human pathogens) ) being 95 

classified as “0” and “1”, respectively. We used three independent variables: (1) 96 

phylogenetic proximity to humans (inverse of the phylogenetic distance calculated as 97 

described earlier and scaled to mean 0, s.d. 1); (2) spatial overlap with humans (using the 98 

spatial overlap index calculated as described above, and scaled to mean 0, s.d. 1); (3) 99 

Pathogen richness (using the residual pathogen richness as described earlier). All 100 

analyses included the family and zoogeographic region as random effects We did not 101 

include the order because the phylogenetic distance to humans primarily reflected order 102 

level differences among the taxa. We used every unique combination Data on 103 

zoogeographic regions was obtained from https://macroecology.ku.dk/resources/wallace 104 

https://macroecology.ku.dk/resources/wallace
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[44]. Because some species occupied multiple zoogeographic regions we used each 105 

unique combination of regions as a unique random effect. Finally, the observed 106 

classification of species as hosts or non-hosts of human pathogens was expected to be 107 

associated with research effort [40]. We thus controlled for differences in effort using the 108 

bootstrap approach described by Gibb et al. [40]. Briefly, we carried out 100 bootstrap 109 

iterations, and for each iteration we refit the INLA model using the data in which non-110 

host species was randomly transitioned to host status as a Bernoulli trial with success 111 

probability p equal to estimated false classification probability [for details on the 112 

bootstrap analyses and calculation of the false classification probability see Gibb et al. 113 

[40]]. For each fitted model we then drew 1,000 samples from the approximated joint 114 

posterior distribution, and we the median and quantile ranges (67% and 95%) across all 115 

samples from the bootstrap ensemble [40].  116 

To develop a framework for spatial prioritization of zoonotic host surveillance efforts we 117 

developed a macroecological model (MEM) of zoonotic host diversity [45, 46]. Briefly, 118 

we first estimated the underlying diversity of zoonotic host species by summing all 119 

species-specific AOH rasters (see details above). We then fitted a MEM to these data 120 

using a random forests algorithm (as implemented in the R package RANGER). The 121 

independent variables used included those associated with: (1) terrain (elevation, slope, 122 

aspect and roughness) calculated from elevation data (see above) using the R package 123 

RASTER; (2) the bioclimatic variables calculated using the R packages DISMO and 124 

ENVIREM using climate data (downloaded from http://chelsa-climate.org/); (3) landcover 125 

http://chelsa-climate.org/
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(downloaded from https://luh.umd.edu/data.shtml) which included four major habitat 126 

types, namely forest (primary and secondary forested land), non-forest (primary and 127 

secondary non-forested land), agriculture (all crops, pasture and rangeland) and urban. 128 

We also included two variables associated with secondary habitats, namely the mean age 129 

of secondary habitat (years) and mean secondary biomass density (kg C/m2); (4) Human 130 

population density (see above). Prior to analyses we reduced the number of variables by 131 

only retaining one of any pair of highly correlated variables (R > 0.70). We controlled for 132 

spatially inequality in research effort using the bootstrap approach described above by 133 

fitting 100 independent random forest models, with each bootstrap iteration randomly 134 

transitioning non-host to host status based on the false classification probability (see 135 

above). We report the average value of all 100 random forest model predictions.  136 

While zoonotic host diversity is an important variable affecting zoonotic disease risk [47, 137 

48], human density also plays an important role. Thus, areas with high zoonotic host 138 

diversity could have low risk of disease emergence in humans if human density (and thus 139 

encounter risk) is low. To prioritize areas based on both zoonotic host diversity and 140 

human density we generated a composite raster consisting of 16 risk categories based on 141 

the pairwise combination of the quantiles of the zoonotic host diversity and human 142 

population density rasters. The composite raster was plotted on an additive (cyan-143 

magenta-yellow) color scale to visually emphasize differences in the two axes considered 144 

(Fig. 3).  145 

  146 

https://luh.umd.edu/data.shtml
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